Microstructure and electrical properties of ZnO-Pr₆O₁₁-CoO-Cr₂O₃-Dy₂O₃-based varistor ceramics

CHOON-WOO NAHM, JONG-AH PARK, MYUNG-JUN KIM Department of Electrical Engineering, Dongeui University, Busan 614-714, Korea E-mail: cwnahm@dongeui.ac.kr

BYOUNG-CHUL SHIN

Department of Information and Materials Engineering, Dongeui University, Busan 614-714, Korea

ZnO varistors are electronic ceramic devices made by sintering ZnO powder with small amounts of various metal oxides, containing necessarily Pr₆O₁₁ or Bi₂O₃. They exhibit highly nonlinear voltage-current (V-I) characteristics expressed by $I = kV^{\alpha}$, where k is a constant and α is a nonlinear exponent, inherent parameter of varistors, and they possess excellent surge withstanding capabilities. Therefore, they have been extensively used to protect semiconductor devices, electronic circuits, and electric power systems from dangerous overvoltage [1, 2]. The majority of commercial ZnO varistors necessarily contain Bi₂O₃ as varistorforming oxides (VFO) and they exhibit excellent varistor properties. However, they have a few shortcomings due to the high volatility and reactivity of Bi₂O₃ melted at about 825 °C during a sintering above 1000 °C [3]. The former changes varistor characteristics with the variation of inter-composition ratio of additives, the latter destroys the multi-layer structure of chip varistors, and it generates an insulating spinel phase deteriorating surge-absorption capabilities. Furthermore, they need many additives to obtain the high nonlinearity and stability.

In the past few years, ZnO varistor ceramics containing Pr_6O_{11} as VFO have been studied to overcome these problems [4–10]. In the former work, Nahm *et al.* reported that ZnO-Pr₆O₁₁-CoO-Cr₂O₃-M₂O₃ (M = Er, Y)-based varistor ceramics exhibit high nonlinear properties and stability [6–10]. Many researchers who are interested in varistors wish to fabricate ZnO varistors exhibiting both higher nonlinearity and higher stability. It is very important to scrutinize the role of individual additive to apply ZnO-Pr₆O₁₁-based varistors in various areas. The purpose of this work is to investigate the effect of Dy₂O₃ incorporation on microstructure and electrical properties of ZnO-Pr₆O₁₁-CoO-Cr₂O₃-Dy₂O₃ (in short ZPCCD)-based varistors.

Reagent-grade raw materials were prepared for ZnO varistors with composition $(98.0 - x) \mod \%$ ZnO + 0.5 mol% Pr₆O₁₁ + 1.0 mol% CoO + 0.5 mol% Cr₂O₃ + x mol% Dy₂O₃ (x = 0.0–2.0). After milling, the mixture was calcined in air at 750 °C for 2 h. The calcined powders were pressed into discs of 10 mm in diameter and 1.8 mm in thickness at a pressure of 80 MPa. The discs were sintered at 1350 °C in air for 1 h. The size of the final samples was about 8 mm in diameter and 1.0 mm in thickness. Silver paste was

coated on both faces of the samples and ohmic contacts were formed by heating at 600 °C for 10 min. The size of electrodes was 5 mm in diameter. The *V-I* characteristics of the varistors were measured using a Keithley 237 unit. The varistor voltage ($V_{1 \text{ mA}}$) was measured at a current density of 1.0 mA/cm² and the leakage current (I_L) was measured at 0.80 $V_{1 \text{ mA}}$. In addition, the nonlinear exponent (α) was determined from $\alpha = (\log J_2 - \log J_1)/(\log E_2 - \log E_1)$, where $J_1 = 1.0 \text{ mA/cm}^2$, $J_2 = 10 \text{ mA/cm}^2$, and E_1 and E_2 are the electric fields corresponding to J_1 and J_2 , respectively.

The capacitance-voltage (*C-V*) characteristics of varistors were measured at 1 kHz using a RLC meter (QuadTech 7600) and an electrometer (Keithley 617). The donor concentration (N_d) and the barrier height (ϕ_b) were determined by the equation $(1/C_b - 1/C_{bo})^2 = 2(\phi_b + V_{gb})/q \varepsilon N_d$ [11], where C_b is the capacitance per unit area of a grain boundary, C_{bo} is the value of C_b when $V_{gb} = 0$, V_{gb} is the applied voltage per grain boundary, q is the electronic charge, ε is the permittivity of ZnO ($\varepsilon = 8.5\varepsilon_o$). The density of interface states (N_t) at the grain boundary was determined by the equation $N_t = (2\varepsilon N_d\phi_b/q)^{1/2}$ [11] and the depletion layer width (t) of the either side at the grain boundaries was determined by the equation $N_d t = N_t$ [12].

The microstructure was examined by a scanning electron microscope (SEM, Hitachi S2400). The average grain size (d) was determined by the lineal intercept method [13]. The crystalline phases were identified by an X-ray diffractometry (XRD, Rigaku $D/\max 2100$, Japan) with Cu K_{α} radiation. The density (ρ) of ZPCCD-based ceramics was measured by the Archimedes method.

Fig. 1 shows SEM micrographs of ZPCCD-based ceramics with Dy_2O_3 content. SEM micrographs clearly show the influence of Dy_2O_3 incorporation on the density and grain size. The sintered microstructure was less densified due to increasing porosity as Dy_2O_3 content increases. The density of ceramics was decreased gradually from 5.53 to 4.43 g/cm³ corresponding to 95.7– 76.6% of theoretical density (TD = 5.78 g/cm³ in ZnO). The average ZnO grain size was saliently decreased in the range of 18.6–4.7 μ m with increasing Dy_2O_3 content. The decrease of grain size is attributed to the precipitation of secondary phase in the grain boundaries and nodal points.

Figure 1 SEM micrographs of ZPCCD-based ceramics with Dy₂O₃ content: (a) 0.0 mol%, (b) 0.5 mol%, (c) 1.0 mol%, and (d) 2.0 mol%.

Figure 2 XRD patterns of ZPCCD-based ceramics with Dy_2O_3 content: (a) 0.0 mol%, (b) 0.5 mol%, (c) 1.0 mol%, and (d) 2.0 mol%.

Fig. 2 shows the XRD patterns of ZPCCD-based ceramics with Dy_2O_3 content. All varistor ceramics have only two phases, i.e., ZnO grain and intergranular layer, as revealed in the former work [7, 10]. Intergranular layer was composed of Pr_6O_{11} (or Pr_2O_3) and Dy_2O_3 and identified by EDS analysis to coexist in the grain boundaries and the nodal points. These phases could be indicated to SEM micrographs. The detailed microstructural parameters are summarized in Table I.

Fig. 3 shows the *E-J* characteristics of ZPCCDbased varistors with Dy_2O_3 content. It can be seen that the knee region of *E-J* curves with Dy_2O_3 is much keener than that without Dy_2O_3 and especially, for the varistors with 0.5 mol% Dy_2O_3 . Clearly, the incorporation of Dy_2O_3 greatly improved the nonlinear properties of varistors. The detailed *V-I* characteristic

Figure 3 E-J characteristics of ZPCCD-based varistors with $\mathrm{Dy}_2\mathrm{O}_3$ content.

parameters were summarized in Table I. The varistor voltage ($V_{1 \text{ mA}}$) was greatly increased in the range of 39.4–436.6 V/mm. This is attributed to the increase of the number of grain boundaries due to the decrease of ZnO grain size with increasing Dy₂O₃ content. The breakdown voltage per grain boundaries (V_{gb}) was in the range of 2–3 V/gb in the varistors with Dy₂O₃, but the V_{gb} of varistor without Dy₂O₃ was only 0.7 V/gb.

TABLE I Microstructural and V-I characteristic parameters of ZPCCD-based varistors

Dy ₂ O ₃ content (mol%)	d (µm)	ρ (g/cm ³)	V _{1 mA} (V/mm)	V _{gb} (V/gb)	α	<i>I</i> L (μA)
0.0	18.6	5.53	39.4	0.7	4.5	87.9
0.5	11.5	5.43	223.8	2.6	66.6	1.2
1.0	6.8	4.64	345.4	2.3	34.2	3.7
2.0	4.7	4.43	436.6	2.1	37.0	2.4

Figure 4 C-V characteristics of ZPCCD-based varistors with Dy_2O_3 content.

Therefore, it is assumed that the ZPCC-based varistor without Dy_2O_3 has poor grain boundaries.

The α value in varistors without Dy₂O₃ was only 4.5, whereas the α value of the varistors with Dy₂O₃ was abruptly increased above 30. Then, the α value varied from maximum (66.6) in 0.5 mol% Dy₂O₃ to minimum (34.2) in 1.0 mol% Dy₂O₃. The maximum α value is much higher than that for incorporation of Er₂O₃ and Y₂O₃ reported previously in equivalent conditions [7, 10]. The *I*_L value in varistors without Dy₂O₃ was 87.9 μ A, whereas the *I*_L value of the varistors with Dy₂O₃ was very abruptly decreased below 4 μ A. The minimum value of *I*_L was obtained from 0.5 mol% Dy₂O₃, exhibiting 1.2 μ A. The variation of *I*_L value revealed to be opposite to that of α value. As a result, the incorporation of Dy₂O₃ was confirmed to significantly improve the nonlinear properties.

The capacitance-voltage (*C*-*V*) characteristics of ZPCCD-based varistors with Dy₂O₃ content are shown in Fig. 4. It can be forecasted that Dy₂O₃ greatly affects *C*-*V* characteristics from the line slope and distribution. The detailed *C*-*V* characteristic parameters were summarized in Table II. It was found that the increase of Dy₂O₃ content leads to the decrease of the donor concentration (*N*_d) from 4.19×10^{18} to 0.33×10^{18} /cm³ as well as the decrease of density of interface states (*N*_t) from 5.38×10^{12} to 1.74×10^{12} /cm². Therefore, Dy₂O₃ serves as an acceptor. The increase of the depletion layer width (*t*) is attributed to the decrease of donor concentration. Really, the *t* is wider at side of lower doping region. With increasing Dy₂O₃ content, the barrier height (ϕ_b) was increased up to

TABLE II C-V characteristic parameters of ZPCCD-based varistors

Dy ₂ O ₃ content (mol%)	$N_{\rm d}$ (10 ¹⁸ /cm ³)	$\frac{N_{\rm t}}{(10^{12}/{\rm cm}^2)}$	$\Phi_{b}\left(eV\right)$	t (nm)
0.0	4.19	5.38	0.74	12.9
0.5	1.15	3.40	1.07	29.5
1.0	0.60	2.68	1.28	44.8
2.0	0.33	1.74	0.97	52.3

1.0 mol% and thereafter decreased. The ϕ_b is directly connected with the N_d and N_t . In other words, the ϕ_b is estimated by the variation rate in the N_t and N_d . In general, the ϕ_b increases with increasing N_t and decreasing N_d .

Acknowledgments

This work was supported by EEC (Electronic Ceramics Center) at Dongeui University as RRC. TIC program through KOSEF (Korea Science and Engineering Foundation), ITEP (Korea Institute of Industrial Technology Evaluation and Planning), and Busan Metropolitan City.

References

- 1. L. M. LEVINSON and H. R. PILIPP, *Amer. Ceram. Soc. Bull.* **65** (1986) 639.
- 2. T. K. GUPTA, J. Amer. Ceram. Soc. 73 (1990) 1817.
- 3. Y. S. LEE and T. Y. TSENG, *ibid.* 75 (1992) 1636.
- 4. A. B. ALLES and V. L. BURDICK, J. Appl. Phys. 70 (1991) 6883.
- 5. Y.-S. LEE, K.-S. LIAO and T.-Y. TSENG, *J. Amer. Ceram. Soc.* **79** (1996) 2379.
- 6. C.-W. NAHM, H.-S. YOON and J.-S. RYU, J. Mater. Sci. Lett. 20 (2001) 393.
- 7. C.-W. NAHM, Mater. Lett. 47 (2001) 182.
- 8. Idem., J. Mater. Sci. Lett. 21 (2002) 201.
- 9. C.-W. NAHM and B.-C. SHIN, J. Mater. Sci: Mater. Electro. 12 (2002) 111.
- 10. C.-W. NAHM, Mater. Lett. 57 (2003) 1317.
- M. MUKAE, K. TSUDA and I. NAGASAWA, J. Appl. Phys. 50 (1979) 4475.
- L. HOZER, "Semiconductor Ceramics: Grain Boundary Effects" (Ellis Horwood, 1994) p. 22.
- J. C. WURST and J. A. NELSON, J. Amer. Ceram. Soc. 55 (1972) 109.

Received 15 July and accepted 29 July 2003